
Research Experience
My academic journey began with research on medical image segmentation at Sun Yat-sen University (SYSU), under the

supervision of Prof. Heye Zhang. As an undergraduate, I focused on nasopharyngeal carcinoma segmentation of CT and MR
images. I explored the potential of densely connected convolutional networks to enhance segmentation IoU, culminating in
a publication in Sensors [12]. During my master’s at HKUST and a research internship at SmartMore, I expanded my focus
to general 3D vision tasks, particularly shape-from-images. My primary research involved 3D reconstruction of reflective
objects, a task with significant industrial demand and recognized as a long-standing challenge in multi-view 3D Reconstruc-
tion. I proposed using polarization information to resolve the ambiguity of reflective surface normals, thereby improving the
accuracy of reconstructed geometry. This work resulted in a holistic neural 3D reconstruction pipeline for reflective objects,
accepted to ICLR 2024 [24]. Additionally, I investigated the multi-modal generation capabilities of Large Language Mod-
els (LLMs) in collaboration with Tencent [25]. Currently, my main interest lies in 3D Vision, and I am working on online
feed-forward Gaussian splatting at Microsoft Research Asia (MSRA).

Research Vision
My long-term goal is to develop a versatile feed-forward 3D vision system utilizing large-scale, multi-sensory 3D data

gathered from a variety of user scenarios. I believe that the field of 3D Vision with Neural Networks is at a pivotal moment,
transitioning from 2D rendering loss to primitive 3D supervision. This shift is driven by the following insights:

Bottleneck of 2D rendering supervision. From NeRFs [15] to Gaussian Splatting [10], the series cam be summarized
as learning 3D representations from 2D signals. It circumvents the insufficiency of 3D data, making training with large-
scale 2D images feasible. However, performance is often hindered by ambiguities inherent in 2D observations [5, 6, 14, 27].
Additionally, these optimization-based representations tend to overfit specific scenes, reducing their generalizability [1] and
limiting their application in data generation [9]. For instance, integrating NeRFs or Gaussian splatting into a standard feed-
forward detection network is challenging due to inner optimization-based reconstruction loops. Recent research has explored
the use of hyper-networks to directly predict the neural weights of NeRFs [17, 18]. However, training these hyper-networks
is challenging, and they are currently handling simple, single objects.

Strengthens of primitive 3D supervision and potential for real-world data. Recent advancements in 3D object genera-
tion have showcased impressive high-fidelity details by replacing volume rendering loss with explicit 3D losses [11, 23, 28].
This supervision helps resolve the ambiguities inherent in 2D images. Moreover, feed-forward networks trained on large
synthetic 3D object datasets like Objaverse & G-Objaverse [3, 16] can generate 3D objects in a single forward pass without
optimization [7,8,20]. Such philosophy should extend to general scenes. Actually, DUSt3R [22], supervised by point clouds
reconstructed from in-the-wild images, has shown significant accuracy improvements and facilitated many downstream tasks
like pose-free 3D reconstruction [4]. However, its broader applicability is limited due to the lack of 3D data from diverse
user scenarios for training. Synthetic 3D objects can be rendered through Blender effortlessly, with accessible ground truth
attributes including materials, meshes and cameras. In contrast, constructing a real 3D dataset encounters collection cost
and alignment issues. Depending on user scenarios, data from diverse modalities is collected using heterogeneous sensors,
including LiDAR in autonomous driving [19], radio waves in digital health [13], and ultrasound in remote sensing [21]. To
bring these methods into piratical applications, it is crucial to fuse and align interdisciplinary real-world data, on a scale
commensurate with Objaverse, collected from various sensors [19]. The trained backbone model, serving as a strong prior,
should be easily adaptable to various downstream tasks.

Open problems. Despite the feasibility discussed, several open problems remain unresolved based on my research at
MSRA. Firslty, existing feed-forward (or generalizable, as referred to in some papers [26]) 3D vision models, including
pixelNeRF [26], pixelSplat [2], and Large Gaussian Model [20], only support one or two views as inputs. More views require
optimization-based global alignment like DUSt3R [22]. Secondly, most of these models are object-centric or foreground-
biased, which deteriorates scene perception performance. Additionally, 3D representations in these studies are often assumed
to be pixel-aligned, meaning each pixel in an image corresponds to one 3D point or Gaussian. This results in redundant points
in general scenes due to overlaps among views and may cause view-inconsistent predictions. Our research on aligning and
merging 3D Gaussians across views has shown significant improvements. Ultimately, current methods are trained solely on
point clouds or depth maps. I propose that collecting multi-sensory 3D data from multiple devices deployed in diverse user
scenarios would enhance performance and generalizability.
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