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ABSTRACT

Learning surfaces from neural radiance field (NeRF) became a rising topic in
Multi-View Stereo (MVS). Recent Signed Distance Function (SDF)–based meth-
ods demonstrated their ability to reconstruct accurate 3D shapes of Lambertian
scenes. However, their results on reflective scenes are unsatisfactory due to the
entanglement of specular radiance and complicated geometry. To address the
challenges, we propose a Gaussian-based representation of normals in SDF fields.
Supervised by polarization priors, this representation guides the learning of geom-
etry behind the specular reflection and captures more details than existing meth-
ods. Moreover, we propose a reweighting strategy in the optimization process to
alleviate the noise issue of polarization priors. To validate the effectiveness of
our design, we capture polarimetric information, and ground truth meshes in addi-
tional reflective scenes with various geometry. We also evaluated our framework
on the PANDORA dataset. Comparisons prove our method outperforms existing
neural 3D reconstruction methods in reflective scenes by a large margin.

1 INTRODUCTION

Reconstructing 3D shapes from 2D images (Furukawa et al., 2015) is a fundamental problem in
computer vision and graphics, with downstream applications such as 3D printing (Chen & Yang,
2014), autonomous driving (Chen et al., 2017), and Computer Aided Design (Furukawa et al., 2010).
Although diffuse objects are precisely reconstructed, reflective and textured-less scenes remain chal-
lenging. Traditional Multi-View Stereo (MVS) methods (Bregler et al., 2000) rely on stereo match-
ing across views, which is hindered in the presence of specular surfaces and texture absence. Recent
methods utilizing implicit neural representation learning for 3D reconstruction have shown promis-
ing accuracy (Mescheder et al., 2019; Yariv et al., 2021), yet they overlook the specular reflection
between light rays and surfaces, failing to adequately handle glossy objects with high-frequency
specular reflection.

Existing methods (Zhang et al., 2021; Liu et al., 2023; Dave et al., 2022) attempt to separate spec-
ular reflection components from radiance to improve the reconstruction process. These methods
model the interaction of light rays and surfaces by Bidirectional Reflectance Distribution Functions
(BRDFs) and estimate them by neural networks. However, the inverse problem posed by BRDFs
formulation is highly ill-posed (Guo et al., 2014), and low-frequency bias (Xu et al., 2019) of neural
BRDFs making the learned geometry over-smoothed (Liu et al., 2023). Therefore, high-frequency
geometry with specular reflection shown in Fig. 1 (a) is intractable for them. Besides, a few meth-
ods employ polarization priors to facilitate the learning of specular reflection because they reveal
information about surface normals. However, polarization information is always concentrated in
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specular-dominant regions and noisy in diffuse regions (Kajiyama et al., 2023), making the recon-
struction process in diffuse-dominant regions distorted.

Faced with the bias of neural BRDF and noise issues of polarization priors, we present a novel per-
spective for reconstructing the detailed geometry of reflective objects. Our key idea is to extend
the geometry representation from scalar SDFs to Gaussian fields of normals supervised by polar-
ization priors. Given a surface point, the normals within its neighborhood are approximated by a
3D Gaussian. And it’s a more informative representation of geometry. The mean shows the over-
all (low-frequency) orientation of the surface, while the covariance captures high-frequency details.
Coincidentally, the representation can be splatted into the image plane as 2D Gaussians, as illus-
trated in Fig. 1 (b). The splatting skips the disentangled specular radiance. Learning of the 2D
Gaussians can be directly supervised by the polarization information about surface normals. Hence,
it circumvents the separation of complex geometry and specular reflection and manages to learn
detailed geometry.

(a) Neural 3D Reconstruction (b) GNeRP

Figure 1: Visualization of Gaussians of normals in Neural Reconstruction pipelines. 2D Gaussians
can be rendered from 3D Gaussians of learned normals.

Furthermore, to tackle the noise issues of polarization priors, we introduce a Degree of Polarization
(DoP) based reweighting strategy. This strategy adaptively balances the supervision of radiance and
polarization priors, enhancing the reconstructing accuracy in diffuse-dominant regions.

In summary, our contributions are as follows:

• We propose a novel polarization-based Gaussian representation of detailed geometry to
guide the learning of geometry behind specular reflection.

• We propose a DoP reweighing strategy to alleviate noise and imbalance distribution prob-
lems of polarization priors.

• We collect a new challenging multi-view dataset consisting of both radiance and polarimet-
ric images with more diverse and challenging scenes.

2 RELATED WORK

2.1 MULTI-VIEW 3D RECONSTRUCTION

Traditional Multi-view Stereo focuses on the extraction of cross-view features to generate 3D points.
(Schönberger et al., 2016; Galliani et al., 2015) try to estimate the depth map of the observed scene
with multi-view consistency and fuse the depth maps into dense point clouds. These methods suf-
fer from accumulating errors due to complex pipelines, and features are hard to be extracted from
reflective objects. (Mescheder et al., 2019) explicitly models the objects’ occupancy in a voxel grid
to guarantee a complete object model is created. However, the resolution of the voxel limits the ac-
curacy of the reconstructed surface. Recently, the success of NeRF (Mildenhall et al., 2020), which
uses a simple MLP to encode the color and density information for a scene, inspired researchers
to resort to implicit representation for multi-view 3D reconstruction. The representative works are
Unisurf (Oechsle et al., 2021), NeuS (Wang et al., 2021), and VolSDF (Yariv et al., 2021), which
exploit an MLP to model a Signed Distance Function (SDF) for a target scene. These methods opti-
mize the implicit representation, i.e., SDF, by minimizing the MSE loss between the rendered pixel’s
radiance value and the corresponding pixel’s radiance value in GT images. Such a paradigm works
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well with Lambertian surfaces. However, only view-conditioned radiance fields fail in reflective
scenes.

2.2 BRDF FOR REFLECTIVE OBJECTS RECONSTRUCTION

In the regions with complex geometry, BRDFs always exhibit high-frequency variations due to the
normals terms, while the low-frequency implicit bias of neural networks (Xu et al., 2019) disables
neural BRDFs from predicting these abrupt changes. It always results in over-smoothed geometry.
For example, NeRO (Liu et al., 2023) adopts Micro-facet BRDF (Cook & Torrance, 1981) parame-
terized by material and normal distribution terms. Although its results of smooth mirror-like objects
are excellent, the spatial continuity of neural BRDF is a barrier to the combination of complex ge-
ometry and specular reflection. In the regions with complex geometry, sole multi-view images with
disentangled radiance result in severe ill-posedness of the inverse problem, as is shown in Fig. 1 (a).
Moreover, explicit estimation of anisotropic normals distribution has been used in rendering delicate
objects, such as anisotropy shading of hairs (Banks, 1994), to improve the perception of orientation
and shapes (Ament & Dachsbacher, 2015). However, anisotropic normals distribution in neural
SDFs for 3D reconstruction remains under-defined and non-trivial. Our method proposes 3D Gaus-
sians, of which anisotropic 3D covariance is more informative than the scalar normals distribution
term in NeRO. The latter only measures the concentration of normals at a surface point.

2.3 MULTI-VIEW 3D RECONSTRUCTION WITH POLARIZATION

Polarization prior reveals the azimuth angle of the surface normal, i.e., the angle between the nor-
mal projection onto the image plane and the positive x-axis of the image. Shape-from-polarization
has been investigated by other papers (Atkinson & Hancock, 2006; Foster et al., 2018; Fukao et al.,
2021; Cui et al., 2017; Kadambi et al., 2015; Zhao et al., 2020) before the invention of neural 3D
reconstruction. But most of them are focused on common scenes. For example, PMVIR (Zhao et al.,
2020) exploits the relation of the polarization angle and the azimuth angle of normals but with only
Lambert shading, and thus it cannot treat reflective objects at all. Neural 3D Reconstruction with
polarization priors has also been explored. Sparse Ellipsometry (Hwang et al., 2022) develops a de-
vice to capture polarimetric information and 3D shapes concurrently. However, their reconstruction
is always disturbed by the noise in diffuse-dominant regions. For example, PANDORA (Dave et al.,
2022) extends radiance in BRDF into polarimetric dimensions while the geometry of diffuse regions
cannot be learned properly.

2.4 GAUSSIANS IN 3D SCENE REPRESENTATION

Gaussians are used to represent the attributes of 3D scenes. Mip-NeRF (Barron et al., 2021) encodes
Gaussian regions of space rather than infinitesimal points for anti-aliasing. (Zwicker et al., 2001)
proposes Gaussian splatting that taking volume data as 3D Gaussians and nearly projects the 3D
Gaussian to the 2D one (Kerbl et al., 2023). (Kerbl et al., 2023) implements the splatting pipeline
on the NeRF for real-time rendering. In numerical geometry, (Berkmann & Caelli, 1994) calculates
the covariance matrix from the projections of the normal vectors to highlight the edges and local
geometry of surfaces. Inspired by them, we demonstrate a further fact that taking surface normals as
3D Gaussians and going through a similar splatting pipeline would exactly be transformed into 2D
Gaussians. Our 2D Gaussians are coincidentally available for polarization priors. Thus, supervised
by polarization priors, the learned 3D Gaussians capture more details, which represent the average
orientation of normals by means and the changes within the neighborhood by covariance matrices.

3 METHODS

3.1 PRELIMINARY OF POLARIZATION

Here, we introduce the concept of polarization and its mathematical relation to surface normals
projected to the captured images. The prior contributes to the disentanglement of specular radiance
and geometry.
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Figure 2: Illustration of polarization shift in specular reflection. The right figure is a detailed de-
scription of the geometry relation between AoP and the surface normal. ψ is the azimuth angle. φ
is the AoP, which is the angle from the positive x-axis to the polarized direction.

Polarimetry describes the vibration status of light waves. Since light is a type of transverse wave
that only oscillates in the plane perpendicular to the light path (Collett, 2005), the full polarimetric
cues of rays are always represented by planar ellipses (Smith & Ward, 1974). The magnitude of
vectors inside these ellipses alludes to the amplitude of the light wave vibration along the vectors,
as shown in Fig. 2. Common light sources, such as sunlight and LED spotlights, emit unpolarized
light, i.e., the light vibrates equally in all directions. In our captured scenes, objects are mostly
illuminated directly by light sources, so we assume that the incident light is unpolarized. During
reflection, the vibration in each direction is absorbed unequally, and unpolarized incident light turns
into partially polarized reflected light captured by polarization cameras. The Angle of Polarization
(AoP) and Degree of Polarization (DoP) are two cues of the polarization ellipse functionally related
to projected surface normals at the points of reflection, which can be formulated as:

φ(i, j) =
1

2
arctan

s2(i, j)

s1(i, j)
, ρ(i, j) =

√
s21(i, j) + s22(i, j)

s0(i, j)
, {φ,ρ} ∈ RH×W , (1)

where φ,ρ are AoP and DoP, (i, j) is the pixel index, and s = [s0, s1, s2, s3] is Stokes vector di-
rectly calculated from polarization capture. Generally, in specularity-dominant regions, the relation
between projected normals and AoP is fixed as Fig 2(b) and the equation ψ +

π

2
≡ φ mod π.

Moreover, DoP is significantly higher in these regions. Details of polarization analysis are shown in
the Appendix.

3.2 GAUSSIAN GUIDED POLARIMETRIC NEURAL 3D RECONSTRUCTION PIPELINE

Polarimetric neural 3D reconstruction refers to reconstructing surfaces by neural implicit surface
learning, given N calibrated multi-view images X = {Ci}Ni=1 with pixel-aligned polarization pri-
ors Y = {φi,ρi}Ni=1. First, we introduce a general pipeline of learning surface by volume rendering,
taking NeuS (Wang et al., 2021) as an example. Sec. 3.2.2 introduces the 3D Gaussian of surface
normals and its transforms to 2D Gaussian in the image plane. It represents the geometry of sur-
face points more precisely and thus can separate detailed geometry from high-frequency specular
radiance. 3.2.3 presents our full optimization containing radiance loss and Gaussian loss, which
measures the gap between these 2D Gaussians and polarization priors. We propose a DoP reweigh-
ing strategy to alleviate the aforementioned noise and imbalanced distribution of polarization priors.
It balances the influence of radiance and polarimetric cues adaptively. Finally, Sec. An overview of
the entire framework is shown in Fig. 3.

3.2.1 LEARNING SURFACE BY VOLUME RENDERING

NeRF (Mildenhall et al., 2020) proposed a novel render pipeline with a combination of spatial neu-
ral radiance fields and volume rendering (Kajiya & Von Herzen, 1984) to synthesize high-quality
novel view images. Unlike traditional explicit meshes, the representation of 3D scenes in NeRF
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Figure 3: Illustration of our method.

is decomposed into spatial-dependent density fields and radiance fields depending on both spatial
position and viewing direction. Then, the color of an arbitrary pixel with a ray r = o + td passed
through can be rendered by volume composition along the ray:

Ĉ(r) =

K∑
k=1

Tiαici(ri,d), Ti = exp (−
i−1∑
j=1

αjδj), αj = 1− exp (−σj(rj)δj), (2)

, whereK points {x|o+tid}Ki=1 on the ray are sampled. σi and ci are approximated volume density
and radiance predicted by neural networks with position x and viewing direction d as inputs. δi is
the length of sampled interval [ti−1, ti]. αi and Ti denote the transmittance and alpha value of points,
and by them the final color is alpha composited (Max, 1995). The neural network is optimized by the
mean square error between the ground truth color C(r) in the image and the rendered color Ĉ(r).

Despite realistic novel view images, the geometry of scenes extracted from learned density fields
is inaccurate with floating artifacts since the shape is not defined in the density field. NeuS (Wang
et al., 2021) defines surfaces as the zero-level set of Signed Distance Field (SDF), and density is
derived from SDF:

[d(xi), f(xi)] = f(xi), αi = max

(
Φs (d (xi))− Φs (d (xi+1))

Φs (d (xi))
, 0

)
, ci = c(xi,ni,d, fi), (3)

where c and f are the geometry network and radiance network, d(xi) is the signed distance to the
surface and fi = f(xi) is the geometry feature. αi is defined by SDF with Laplace distribution
Φs (x) = (1 + e−sx)−1, where the variance s is a trainable parameter. The volume rendering pro-
cess is analogous to NeRF, while the radiance network takes normals ni = ∇xd(xi) and geometry
feature fi as additional inputs.

3.2.2 GAUSSIAN SPLATTING OF NORMALS

Neural SDF-based 3D reconstruction excels at smooth Lambertian objects. With neural BRDF
defining the specular reflection between rays and surfaces, smooth surfaces of reflective objects can
also be properly learned. However, the low-frequency implicit bias of neural networks (Xu et al.,
2019) is a barrier for both of them to recover delicate geometry behind specular reflection, such as
abrupt normal changes in NeRO (Liu et al., 2023). Thus, we propose a 3D Gaussian estimation of
distributions of normals as an additional representation of geometry details. We show how it can be
splatted to the image plane, making it available for 2D polarization supervision.

Instead of separate vectors assigned to each point, the normal within the neighborhood of an arbitrary
position xi is assumed as a Gaussian:

G(x|xi) = N (n(xi),Σ(xi)) =
1

(2π)
3
2 |Σ(xi)|

1
2

exp

(
−1

2
(x− n(xi))

TΣ(xi)
−1

(x− n(xi))

)
, z

(4)
where n ∈ R3 is the normal, and Σ ∈ R3×3 is the covariance of the Gaussian. Given a ray with
discretization {xi|x+ tid}Kk=1, additional M positions within the neighborhood are super-sampled
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to estimate the covariance. In this paper, M is 6 containing xi−1, xi+1 and four positions around
the ray. Hence, the unbiased estimation of Gaussian can be formulated as:

Ĝ(x|xi) = N (n(xi), Σ̂(xi)) = N

n(xi),
1

M − 1

M∑
j=1

(
n(xj

i )− n(xi)
)(

n(xj
i )− n(xi)

)T ,

(5)
where n(xj

i ) = ∇xd(x
j
i ),n(x

j
i ) ∈ R3. However, those 3D Gaussians are not accessible in captured

2D images, and volume rendering in Sec. 3.2.1 only takes 3D scalar fields into account, making the
projection of 3D Gaussians non-trivial. Alternatively, (Zwicker et al., 2001) presents a splatting ap-
proach treating colors in 3D space as Gaussian kernels and visualizing them on the image plane. We
apply analogous transforms and further prove our normal-based 3D Gaussians are exactly splatted
to 2D Gaussians. Given a viewpoint, the transform can be formulated as:

Ĝ(x|xi)p = N (JWn(xi),JWΣ̂(xi))W
TJT) = N

([
np(xi)

0

]
,

[
Σ̂p(xi)

0

])
, (6)

where W ∈ R3×3, J ∈ R3×3 are viewing transform matrix and normal projection matrix (Chen
et al., 2022), respectively. Derivation of them is shown in the Appendix. It shows that only the
first two rows of the transformed mean vector and the upper 2 × 2 square block of the transformed
covariance matrix remain non-zero, splatting 3D Gaussians to 2D Gaussians in the image plane.
For simplification, 2D Gaussians are also denoted by Ĝ(x|xi)p = N (np(xi), Σ̂p(xi)), where
np ∈ R2, Σ̂p(xi)) ∈ R2×2. Moreover, the SVD of the covariance matrix Σ̂p = V̂Λ̂V̂T cir-
cumvents the ill-posedness of the covariance matrix and reveals its relation to anisotropic normal
distribution. Intuitively, if the geometry appears smooth from the imaging perspective, then the
corresponding normals of the neighborhood will be projected to similar vectors, resulting in an in-
significant deviation of the eigenvalues. Otherwise, the deviation would be significant. Eigenvectors
also show the local shape of the position, as shown in Fig. 4 (e). Finally, all 2D Gaussians on the
ray passing through the pixel u is composited by volume rendering:

Ĝ(u) = N

(
K∑

k=1

Tiαinp(xi),

K∑
k=1

TiαiΣ̂p(xi)

)
= N (np(u), Σ̂p(u)), (7)

where Ti and αi are in Eq. 2. np(u) ∈ R2, Σ̂p(u) ∈ R2×2. The mean of 3D Gaussians n(xi),
which is splatted to np(u), represents the overall orientation of xi. And the covariance Σ̂(xi))

and splatted Σ̂p(u)) in the image model the high-frequency details. In this way, our representation
captures more details than NeuS and other methods based on the neural BRDF parameterized by
isotropic normals distribution. Another main strength of those 2D Gaussians is direct supervision
by polarization priors, which is introduced in Sec. 3.2.3.

3.2.3 OPTIMIZATION WITH REWEIGHTED POLARIZATION PRIORS

(a) Scene (b) AoP (c) DoP (d) R. AoP

Visualization of DoP Reweighing (e) 2D Gaussians in Polarization

Figure 4: Visualization of Reweighted AoP Priors. Red boxes bound specular reflection dominant
regions, and the blue boxes bound diffuse ones. (d) is the AoP map reweighted by DoP. Saturation
in (e) indicates the degree of anisotropy, and color represents the direction of the singular vector of
2D Gaussians’ covariance. A few 2D Gaussians are drawn as ellipses for intuition.
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The 2D Gaussian in Sec. 3.2.2 can be directly extracted from AoP priors {φi}Ni=1 in Eq. 1 by:

G̃p(u|ui) =N (ñp(ui), Σ̃p(ui))

=N

sv(ψ(ui)),
1

M ′ − 1

M ′∑
j=1

(
v(ψ(uj

i ))− v(ψ(ui)))
)(

v(ψ(uj
i ))− v(ψ(ui)))

)T ,

(8)
where u

(j)
i = (x

(j)
i )p is the corresponding pixel index of (super-sampled) points on the ray. There-

fore, M ′ = 4 since xi−1 and xi+1 are on the same ray as xi. v(θ) represents a 2D unitary vector
rotated by θ. Ψ ≡ φ + π

2 mod π is the azimuth angle of normals, derived from the AoP in Eq.
1. And s is a scale factor. Similar to Sec. 3.2.2, the estimated covariance matrix is decomposed
into Σ̃ = ṼΛ̃ṼT. We define the degree of anisotropy (DoA) of those 2D Gaussians as Λ0

Λ1
. 2D

Gaussians saturated by DoA are visualized in Fig. 4 (e). In this Fig, color is concentrated to and
coherent along the edges of the scene. It shows DoA is higher in the region with complicated geom-
etry and surface changes most dramatically along singular vectors of covariance. Before optimiza-
tion, the polarization prior AoP is reweighted by DoP to alleviate the aforementioned observational
noise and imbalanced distribution problem in Sec. 1. The noise of AoP is mainly generated by
diffuse reflection because it’s always weakly polarized (Kajiyama et al., 2023). The DoP in diffuse-
dominant regions is significantly lower than specular-dominant ones, as shown in Fig. 4 (c) and (d).
Thus, the reweighted AoP defined as φ · ρ is proposed as an alternative supervision with less noise.
Meanwhile, radiance is disentangled with surroundings in specular reflection dominant areas. To
adaptively balance radiance and polarization priors, our full loss function during reconstructing is
defined as:

L =α(1− ρ)Lcolor + βρ(Lmean + Lcov) + γLeik + δLmask,

Lcolor = ∥ Ĉ(u)−C(u) ∥2, Lmean =∥ φ̂(np(u))−φ(u) ∥1,

Lcov =

(∥∥∥∥∥Λ̂1

Λ̂0

− Λ̃1

Λ̃0

∥∥∥∥∥
1

+ β′ < V̂, Ṽ >

)
(u), Leik =

1

K

K∑
i=1

(∥∇xd(xi)∥2 − 1)2,

(9)

where Lcolor and Lmask are the radiance rendering loss and the BCE loss of object masks in
NeuS (Wang et al., 2021). Splatted 2D Gaussians is supervised by ψ(u) and Σ̃p(u) in Eq. 8.
φ̂(np(u)) ≡ ψ(u) + π

2 mod π and ψ is the azimuth angle of normals. The supervision of ra-
diance and polarization priors are reweighted by the DoP ρ. Especially, only Anisotropy (ratio of
singular values) and eigenvectors are supervised to avoid scaling and numerical issues. If the local
shape is like a plane, normals will change smoothly in all directions, and the Anisotropy approaches
1. If there are some details like edges, normals tend to change abruptly and exhibit directionality,
represented by eigenvectors. Leik is a regularization term of the gradient of SDF widely used (Gropp
et al., 2020). α, β, γ and δ are hyper-parameters.

4 EXPERIMENTS

To evaluate the effectiveness of our method, we tested GNeRP on objects from multiple scenes and
compared them with existing state-of-the-art neural 3D reconstruction methods.

PolRef Dataset The methods are evaluated on the PANDORA dataset (Dave et al., 2022) and
captured scenes by ourselves. The PANDORA includes 3 reflective objects (Owl, Blackvase, and
Gnome) with polarization priors. However, their ground truth shapes are unavailable for quantitative
evaluation. Moreover, the diversity of materials, geometry, and illumination is not enough for over-
all comparisons. Only the geometry of the Gnome scene is complicated but less reflective. Only a
mirror-like ball in the Blackvase reflects surroundings other than highlights. Other common datasets,
including Shiny Blender (Verbin et al., 2022), lack polarization priors for our method. To compre-
hensively evaluate the performance of 3D reconstruction methods, a new challenging multi-view
dataset named PolRef was collected, consisting of objects with reflective and less-textured surfaces
captured with various illumination. Radiance images and aligned polarization priors were captured
in one shot using polarization cameras. To obtain precise and complete ground truth shapes, objects
were produced using SLA 3D printers, with an accuracy tolerance of ±0.1mm. Detailed descrip-

7



Published as a conference paper at ICLR 2024

tions are shown in the Appendix. The dataset will be released to facilitate further research on 3D
reconstruction in more challenging scenes in the future.

Experimental Settings GNeRP is built upon NeuS (Wang et al., 2021). The geometry network
and radiance network in Fig. 3 is the same as that of NeuS. Since the covariance loss Lcovin Eq. 9
refines the details of the geometry, it will not be activated during the initial 50K steps. The model is
trained for 200k iterations and takes about 6 hours on a server with 4 NVIDIA RTX 3090 Ti GPUs
for the reconstruction. After optimization, the meshes are extracted from learned SDF by Marching
Cubes (Lorensen & Cline, 1998) with a resolution of 5123. The hyper-parameter settings are shown
in the Appendix D.3.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We conducted the comparison of reconstruction accuracy between our methods and several state-of-
the-art methods, including baseline methods for neural 3D reconstruction (Unisurf (Oechsle et al.,
2021), VolSDF (Yariv et al., 2021), and NeuS (Wang et al., 2021)), two view-consistency based
methods (NeuralWarp (Darmon et al., 2022) and Geo-NeuS (Fu et al., 2022)), two new methods for
reconstruction of reflective objects (NeRO (Liu et al., 2023) and Ref-NeuS (Ge et al., 2023)), and a
polarization-based method (PANDORA (Dave et al., 2022)).

Figure 5: Visual comparison of our method and state-of-the-art methods.

A qualitative comparison between our method and state-of-the-art methods specially designed for
reflective objects is shown in Fig. 7, which demonstrates that our method significantly improves
the geometry details and accuracy of normals. In the Ironman scene, NeRO reconstructed an over-
smoothed geometry. Due to the spatial continuity of neural BRDF, it failed to reconstruct the high-
frequency armor details with abrupt normal changes. The shape of Ref-NeuS is more accurate, but
the sole scalar SDF is not able to predict the geometry details. The duck scene is more reflective
with a combination of highlights and reflection of surroundings. Although Ref-NeuS detected the
reflective regions, it was still misled by the environment radiance and reconstructing concave holes.
The results of PANDORA are over-smoothed in Ironman and disturbed by noise in polarization
priors in Duck. Additional comparisons of different scenes are shown in the Appendix. We conduct
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Methods Ironman Duck Cow Snorlax Mean

Unisurf* (Oechsle et al., 2021) 3.97 10.83 14.43 14.33 10.89
VolSDF (Yariv et al., 2021) 2.72 5.16 5.95 3.20 4.26
NeuS (Wang et al., 2021) 2.28 2.12 3.82 2.11 2.58

Geo-NeuS (Fu et al., 2022) 4.77 10.12 17.48 10.39 10.82
NeuralWarp (Darmon et al., 2022) 12.44 19.78 5.41 20.57 14.55

NeRO* (Liu et al., 2023) 2.29 23.75 2.95 24.30 13.32
Ref-NeuS (Ge et al., 2023) 1.88 1.93 3.66 1.99 2.34

PANDORA † (Dave et al., 2022) 4.61 5.28 7.96 5.73 5.90

GNeRP 1.34 1.63 1.39 1.05 1.35

Table 1: Quantitative comparison with state-of-the-art methods. The lower is better. * indicates the
method doesn’t use object masks. † refers to the use of polarization priors. The best scores are bold,
the second best scores are double underlined, and the third best scores are underlined.

quantitative comparisons on the four scenes with ground truth meshes in our dataset. The evaluation
metric is Chamfer Distance according to NeuS (Wang et al., 2021) and Unisurf (Oechsle et al.,
2021). Scores are reported in Table 1, which shows our method reconstructs more precise meshes in
all four scenes. NeRO (Liu et al., 2023) needs environment information to calculate occlusion loss,
and Unisurf also learns occupancy from backgrounds. Training them with masks failed directly, so
we report the scores without masks in Tab. 1 denoted by *. Geo-NeuS needs sparse points from
Structure-from-Motion (SfM) Schönberger et al. (2016) to calculate SDF loss and select the pairs
based on SfM for the warping process. We did the sparse reconstruction in COLMAP and followed
the pairs selection method in NeuralWarp. Full polarimetric acquisition (Stokes vector [s0, s1, s2],
see in the Appendix) is required by PANDORA. We processed the raw polarization capture to follow
its data conventions. Sparse reconstruction of reflective scenes was noisy and incomplete, resulting
in the worst accuracy by Geo-NeuS and NeuralWarp. Ref-NeuS demonstrated comparable scores
on all scenes, but our method still outperformed.

4.2 ABLATION STUDY

Scene NeuS w/ Lmean w/ Lcov w/ ReW. Lmean w/ ReW. Lcov Full

Snorlax 2.11 2.03 3.01 1.81 2.07 1.05
Cow 3.82 2.72 5.54 1.94 2.29 1.39

Table 2: Ablation Study. Lmean, Lcov are in Eq. 9.

To validate the effectiveness of the proposed modules, we test the following three settings as shown
in Tab. 2. W/Lmean refers to the naive supervision of φ and azimuth angle of normals in SDF.
Due to the noise, the results are worse. W/Lmean refers to the polarization supervision with only
covariance. The reconstruction is focused on details and results in the worst scores. W/ ReW.
Lmean indicates the reweighted losses (1− ρ)Lcolor + ρLmean. Similarly, w/ReW. Lcov represents
(1− ρ)Lcolor + ρLcov. The reweighting does improve the efficiency of polarization priors. Finally,
the full setting shows the best scores. Additional visualization is shown in the Appendix.

5 CONCLUSION

We propose GNeRP to reconstruct the detailed geometry of reflective scenes. In GNeRP, we propose
a new Gaussian-based representation of normals and introduce polarization priors to supervise it.
We propose a DoP reweighing strategy to resolve noise issues in polarization priors. We collect a
new, challenging multi-view dataset with non-Lambertian scenes to evaluate existing methods more
comprehensively. Experimental results demonstrate the superiority of our method.
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A METHOD DETAILS

A.1 POLARIZATION ANALYSIS

The primal polarization information captured in one shot is a four-directional polarization image
obtained by using four directional linear polarizers at angles of 0◦, 45◦, 90◦, and 135◦. After the de-
mosaicing process, the four directional images can be denoted as I0, I45, I90, and I135 respectively.
For computational efficiency, the Stokes representation is widely used, such as in PANDORA Dave
et al. (2022), which is defined as follows:

S =

 s0
s1
s2
s3

 =

 I0 + I90
I0 − I90
I45 − I135

0

 , I ∈ RH×W×3. (10)

It is noted that the fourth component of Stokes vector is zero because it represents circular polariza-
tion, which is not captured by linear polarizers. The vector also covers radiance information, which
can be derived as:

Irad =
1

2
s0. (11)

However, the Stokes vector is always noisy and redundant for 3D reconstruction. This is because, in
addition to the orientation of surfaces, the Stokes vector is affected by environmental variables and
the nature of objects. These variables include, but are not limited to, illumination, roughness, and
material properties. PANDORA Dave et al. (2022) supervises the full vector for inverse rendering,
but it’s unnecessary for learning geometry only. Therefore, we refine the Stokes vector into the AoP
and DoP cues, as they are most related to the geometry within the Stokes vector. Calculating AoP
and DoP from Stokes vector can be formulated as follows:

φ(i, j) =
1

2
arctan

s2(i, j)

s1(i, j)

ρ(i, j) =

√
s1(i, j)2 + s2(i, j)2

s0(i, j)

, {φ,ρ} ∈ RH×W , (12)

where φ(i, j) is the AoP at the pixel (i, j), lying in the interval of [0, π]. And ρ(i, j) is the DoP
ranging from 0 to 1.

A.2 PERSPECTIVE TRANSFORM OF GAUSSIANS

Similar to (Zwicker et al., 2001), transforms of 3D Gaussians to 2D Gaussians are performed based
on the lemma:

Lemma 1 Given a 3D affine transform u = Φ(x) = Mx+ c, a 3D Gaussian G(x) = N (µ,Σ) is
transformed into:

G′ (u) = N (Φ(µ),MΣMT ) (13)
It can be proven by replacing x with Φ−1(u).
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During the imaging, points in the world space are projected to 2D pixels through the view transform
matrix and perspective projection matrix. The view transform converts the world coordinates to the
camera ones. It can be formulated as Φ(x) = Rx + t, where R is a rotation matrix and t is a
translation vector. For bound normals, the translation will not change their orientation, and thus the
corresponding matrix W = R. However, the perspective project matrix of normals is quite different
from points. For 3D points, the transform is non-linear projecting points to the image plane. On the
contrary, the projection of normals is proven to be linear, which can be formulated as (Chen et al.,
2022):

z× (v × n) = [−vznx + vxnz,−vzny + vynz, 0]
T
=

[ −vz 0 vx
0 −vz vy
0 0 0

]
n = Jn, (14)

where n is the normal vector, v is the vector points to the location of the normal vector, i.e., the
direction of the ray, and z = [0, 0, 1]T . Since both of the view transform and projection in Eq. 14
are affine, the structure of Gaussian holds. Moreover, the last row of J is all-zero, making only the
upper 2 × 2 square block of JMJT and the first two rows of Jx are non-zero. It explains the last
term in Eq. 6.

A.3 GAUSSIANS ESTIMATION AND DECOMPOSITION

Given a normal vector of a 3D point n(xi) with normal vectors of super-sampled points with the
neighborhood {n(xj

i )}Mj=1, a 3D Gaussian N (n(xi), Σ̂(xi)) can be estimated by Eq.5. Then, the
3D Gaussian is transformed into the camera coordinates N (np(xi), Σ̂p(xi)) by Eq. 6. Finally, all
3D Gaussians along the same ray are composited into a 2D Gaussian N (np(u), Σ̂p(u)) in the pixel
u by volume rendering in Eq. 7, where xi = o(u) + tid(u). Then Singular Value Decomposition
(SVD) (Klema & Laub, 1980) is performed to get Λ̂(u):

Σ̂p(u) = V̂Λ̂V̂T(u) (15)

For 2D polarization priors, 2D Gaussians are estimated by Eq. 8. For the sample xj
i , the correspond-

ing 2D pixel can be located by the ray xj
i = o + tid

j since dj and the pixel uj is bijective. From
the AoP φ(u), we can derive the orientation of the projected normal vector ψ. It’s represented by:

s · v(ψ(uj)) = [cos(ψ(uj), sin(ψ(uj)]T , ψ(uj) =
(
φ(uj) +

π

2

)
mod π

, (16)

where s is the scale factor equal to the magnitude of the projected normal vector. Through Eq. 8, 2D
Gaussians of polarization images can be estimated. Finally the same SVD is performed to get Λ̃.

B POLREF DATASET

Since ground truth geometry is inaccessible in the most of existing polarimetric multi-view datasets,
we sampled a new dataset named PolRef Dataset to evaluate our method comprehensively. The
dataset is split into real captured scenes and synthetic scenes.

Dataset Collection The dataset consists of 8 scenes (Ironman, Snorlax, Duck, Cow, Cat, Vase,
Bunny, and Dragon). For real scenes, the capture pipeline is illustrated in Fig. 6 (a). Radiance im-
ages and aligned polarimetric priors were captured in one shot using polarization cameras (LUCID
PHX050S-Q and HIKIVISION MV-CH050-10UP). We captured multiple views around the object.
The objects were put on a calibration disk designed for 360◦ capture to get poses. The data process-
ing formulation to extract polarization priors is listed in Sec. A.1. To obtain precise and complete
ground truth shapes, 4 objects (Ironman, Snorlax, Duck, and Cow) were produced using SLA 3D
printers, with an accuracy tolerance of ±0.1mm, given STL files as ground truth shapes. To enhance
the diversity of the dataset, two non-3D printed objects were also included in the data collection pro-
cess. Moreover, to increase the diversity and evaluate our method more comprehensively, synthetic
data (Bunny and Dragon) is generated using the Mitsuba renderer (Nimier-David et al., 2019). Mit-
suba is able to render polarization priors (Stokes vectors) from meshes with pre-defined attributes
of scenes, as illustrated in Fig. 6 (b). In addition to polarization priors, ground truth normal maps
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are accessible through rendering, making the evaluation of normals accuracy available. The dataset
will be released to facilitate further research on 3D reconstruction in more challenging scenes in the
future.

Real Scene

Polarization Camera

𝑰𝟗𝟎∘

𝑰𝟒𝟓∘

𝑰𝟏𝟑𝟓∘

𝑰𝟎∘

𝒔𝟎

𝒔𝟎
+
𝒔𝟏

𝒔𝟎
+
𝒔𝟐

𝛗	(𝑨𝒐𝑷)𝝆	(𝑫𝒐𝑷) 𝑺𝒕𝒐𝒌𝒆𝒔𝑰	𝑰𝒎𝒂𝒔𝒌	

Training Data

(a) Real Dataset Capture

Mitsuba 
Renderer

𝒔𝟎
𝒔𝟏
𝒔𝟐

𝒏

𝑺𝒕𝒐𝒌𝒆𝒔 𝑵𝒐𝒓𝒎𝒂𝒍𝒔

(b) Syn. Dataset

Figure 6: Pipeline of PolRef Dataset.

Evaluation Protocol For real and synthetic datasets, the accuracy of reconstructed meshes is mea-
sured by Chamfer Distance (CD), which can be formulated as:

CD(P1, P2) =
1

2n

n∑
i=1

|xi −Nearest (xi, P2)|+
1

2m

n∑
j=1

|xj −Nearest (xj , P1)| , (17)

where xi is the vertex, n,m are the number of vertices in meshes, and Nearest(x, P ) =
argminx′∈P ∥x− x′∥ is nearest neighboring function. Mean Angular Error (MAE) of normals is
introduced to the evaluation of synthetic data since ground truth normals are available, which can be
formulated as:

MAE(n̂,n) =
1

NM
arccos

(
n̂j
i · n

j
i

∥n̂j
i∥∥n

j
i∥

)
, (18)

where nj
i is the ground truth normal vector at the pixel i in the view j, and N , M are the number of

views and pixels, respectively. Compared to CD, MAE is more sensitive to details of shapes, where
normals change abruptly.

C ADDITIONAL COMPARISONS WITH EXISTING METHODS

C.1 VISUAL COMPARISON ON PANDORA DATASET

Visual comparison is shown in Fig. 7. In the Owl scene, all baseline methods fail to reconstruct
feathers, of which surfaces are mistakenly concave. Because baseline methods recognize dark radi-
ance as the cue of deeper surface points. In the Black Vase and Cat scenes, Unisurf and NeuS suffer
from severe shape-radiance ambiguity as they cannot disentangle specular reflection with surface
color and wrongly reconstruct the shapes of reflected scenes. VolSDF distinguishes reflection and
color more clearly than them but still worse than our method in glossy areas, as shown in the Cat
scene. In the Vase scene, even though we have tried as many combinations of hyper-parameters
as we can, Unisurf still fails to reconstruct rough geometry. VolSDF isn’t able to find correct sur-
face points from dark radiance, as the hole of the vase is wrongly recognized as a convex surface.
The reflection area is also distorted in the shape reconstructed by NeuS. Collectively, our method
outperforms baseline methods by a large margin in all four scenes.
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Scene Unisurf VolSDF NeuS Ours

Figure 7: Visual comparison of our method and baseline methods. The Owl and Black Vase scenes
are PANDORA Dave et al. (2022) dataset. The Cat scene is sampled with indoor illumination and
the Vase with a single light source.

C.2 COMPARISON ON SYNTHETIC POLREF DATASET

We also evaluated our method on the generated dataset. In contrast to real datasets, ground truth
normal maps are accessible in generated scenes, so we introduced the Mean Angular Error (MAE) of
normals as an additional evaluation metric. Compared to Chamfer Distance (CD), MAE can reflect
the accuracy of reconstructed details better. Results demonstrate that our method still outperforms
existing methods for reconstructing reflective objects. Tab. 3 shows our method outperforms both

Scene GNeRP (Ours) Ref-NeuS NeRO PANDORA
CD ↓ MAE ↓ CD ↓ MAE ↓ CD ↓ MAE ↓ CD ↓ MAE↓

Bunny 0.72 0.78 1.09 1.03 1.41 2.55 3.77 18.15
Dragon 0.59 1.03 0.82 1.23 2.15 3.47 5.48 10.98

Table 3: Comparison on PolReF Synthetic Dataset.

in mesh distance (CD) and accuracy of normals (MAE) quantitatively. Visualization of normals is
shown in Fig. 8. Similar to other experiments, the normals reconstructed by existing methods always
be over-smoothed, resulting in a lack of details. For instance, the scale details of the dragon scene
are omitted in other methods, particularly in the NeRO method. PANDORA fails in both scenes
because estimating Stokes vectors with these complex geometries is challenging.

C.3 VISUAL COMPARISON ON DIFFUSE DATASET

To validate the generalization ability of our method, evaluation of diffuse-dominant objects is con-
ducted on the Camera scene captured in PMVIR (Zhao et al., 2020). Visual comparison with our
baseline method NeuS is shown in Fig. 9. Quantitative comparisons are unavailable since the ground
truth mesh isn’t collected in the dataset.
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Radiance GT Normals GNeRP(Ours) Ref-NeuS NeRO PANDORA

Figure 8: Visual comparison of normals on PolRef Synthetic Dataset.

Reference GNeRP(Ours) NeuS

Figure 9: Visual comparison of a diffuse object with the baseline method.

As is shown in the figure, our method reconstructs more details of small structures such as buttons,
knobs, and slots of the camera. It proves our method can handle diffuse objects concurrently.

C.4 VISUAL COMPARISON OF NORMALS WITH REF-NERF

Ref-NeRF Verbin et al. (2022) is a state-of-the-art method for reflective object rendering. However,
its mesh is inaccessible, and the normals are noisy due to the Integrated Position Encoding (IPE),
so we did not involve it in the overall comparison. Instead, we show an example of the Cat scene to
show the incomparable normals in Fig.10.

D ADDITIONAL ABLATION ANALYSIS

D.1 VISUALIZATION OF EFFECTIVENESS OF DOP REWEIGHTING

DoP efficiently alleviates the noise in polarization prior. One of the most significant scenes is Gnome
in the PANDORA dataset, as is shown in Fig. 11.
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(a) Ours (b) Ref-NeRF

Figure 10: Normals comparison between Ref-NeRF and ours.

Figure 11: Ablation study of DoP reweighting. Top-Down: w/ DoP ReW., w/o DoP ReW., NeuS

D.2 VISUALIZATION OF EFFECTIVENESS OF COVARIANCE

Lmean is our key design regarding to Gaussians of normals. In our experiments, it significantly
improves the reconstruction of abrupt normal changes at the mouth of the Duck. It’s shown in Fig.
12.

(a) w/ ReW. Lmean (b) w/ ReW. Lmean,Lcov

Figure 12: Ablation study on covariance loss.

D.3 ABLATION STUDY OF HYPER-PARAMETERS

In our experiments, hyperparameters include weights of loss functions (α, β, γ, and δ) and the
number of super-sampled points M . γ and δ are fixed at 0.1 to follow previous methods. β and β′
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are fixed at 0.1. However, α is set to either 0.1 or 1, depending on the overall ratio of reflection
regions. Increased reflection regions indicate a decrease in the reliability of radiance cues, and
therefore, the value of α should be decreased.

D.3.1 WEIGHT OF RADIANCE LOSS

We test different weights of the radiance loss function on the Bunny scene. Results are shown in
Fig. 13. Fig. 13 (d) demonstrates that if α is too low, the method cannot extract efficient radiance

(a)AoP (b)α=1.0
CD=0.94, MAE=0.66

(c)α=0.1
CD=0.72, MAE=0.78

(d)α=0.01
CD=2.49, MAE=3.07

Figure 13: Ablation study of the weight α. CD refers to Chamfer Distance, and MAE refers to Mean
Angular Error.

cues, and then the regions with less polarization prior are incorrectly interpreted as holes.

D.3.2 NUMBER OF SUPER-SAMPLING WITHIN NEIGHBORHOOD

In the paper, M = 6 additional points within the neighborhood of xi are sampled for simplification.
To validate the robustness of this choice, we sampled double points around the ray. Results are
shown in Tab. 4. It shows that increasing M will not enhance the accuracy significantly.

Scene M = 6 M = 10

Duck 1.63 1.62

Table 4: Ablation study on M .

E LIMITATION

We observe that a major limitation of our method is that the reconstruction relies on polarimetric
imaging. As illustrated in Fig. 6, radiance images and polarization priors are generated through
polarimetric imaging. Moreover, due to hardware limitations, the imaging quality of polarimetric
cameras is generally slightly lower compared to regular RGB cameras, and it is more prone to noise
in shaded scenes. Furthermore, existing acceleration techniques for NeRF, such as Instant-NGP and
Voxel, have not been incorporated into this method. As a result, the training and inference speed of
the model is lower compared to existing NGP-based methods.
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E.1 FAILURE CASE

Figure 14: Visualization of distorted mesh resulted by shading.

We present a failure case in Fig. 14. The region bounded by the boxes is shaded by self-occlusion,
making the extraction of polarimetric cues noisy shown in the middle sub-figure. Moreover, the
radiance is too dim to learn geometry properly. Consequently, a wrong dent exists in the region of
the reconstructed mesh.
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